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Summary. The relation between the sum of Wigne, r-Seitz-type one-electron 
Hamiltonians of all electrons in a system (any molecule or solid) and the 
complete Hamiltonian for the system is deduced. According to this relation, the 
total energy for an electronic configuration may be formulated approximately as 
a quadratic function of the atomic charges defined for the configuration added to 
the sum of the energies of occupied orbitals. This formula is necessary for 
evaluating the system's total energy, using the orbital energies calculated from 
the Wigner-Seitz-type potential (called the linkage of embedded atomic fields 
(LEAF)), and is also useful for analyzing and understanding electronic struc- 
tures, reactivities, and other properties of molecules and solids. 
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1. Introduction 

The independent particle model (IPM) is certainly a bad approximation for 
many systems (molecules or solids), but it is nevertheless essentially helpful for 
analyzing and understanding electronic structures, reactivities, and other proper- 
ties. In the IPM, total energies of a system are equal to the sums of the orbital 
energies of all electrons in the system. Hiickel theories are applications of this 
equation to molecules and have greatly assisted our understanding of molecules 
(e.g., [1]). However, the applicability of total energy equation is limited [2]. 
Thus, people usually use the Hartree-Fock molecular orbital method and its 
derivatives, which are applicable to the ground states of all molecules, Unfortu- 
nately, these methods abandon the merit of the IPM: the orbital varies as a 
function of electronic states and the relation between orbital energies and total 
energies is generally complicated. This is very inconvenient for analyzing and 
understanding electronic structures. 

It would be useful to have a molecular orbital theory in which the orbitals 
are calculated from a given one-electron potential, as in noniterative Hiickel 
theories, and the total energy in every electronic state can be calculated by 
adding a simple correction term to the sum of the orbital energies. The 
Wigner-Seitz-type potential, called the linkage of embedded atomic fields 
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(LEAF), is similar to the one-electron potential in the extended H/ickel (EH) 
theories and the Wigner-Seitz method [3, 4]. This paper deductively reveals the 
approximate relation between the complete Hamilton/an and LEAF one-electron 
Hamiltonians for any molecule or solid, or between the total energies and LEAF 
orbital energies of the system. The present approximate form of the total energy 
for an electronic configuration is the sum of the occupied LEAF orbital energies 
added to a simple function of atomic charges defined for the configuration. It 
therefore enables an intelligible analysis of various electronic states in terms of 
the orbitals and atomic charges. 

2. Derivation 

2.1. Definition of  Hamiltonians 

The complete Hamilton/an (or the total-energy operator) for a system, which 
consists of N. fixed nuclei and Ne electrons, is defined as 

H = T + V ,  (l) 
where 2~ is the kinetic energy of electrons in the system represented as 

Ne 
I" - ~ . hE/2rn(dE/dx~ + a2/dy~ + dZ/dz~), (2) 

and V is the potential term represented as 
Nn Nc Are Ne 

v =  Z Z (-Z,e )llr,-R l+(ll2) Y. Y. e:l lr ,-r, I  
a = l # = l  # = 1  vffil  

Nn Nn 

+(1/2) Z E Z,,Zpe~IIR~-RaI, (3) 
0t=l  f l = l  

( ~ # )  

where # is the label for the #th electron in the system, a is the label for the ath 
nucleus in the system, r~ = (x~, y~, z~) the position vector of the #th electron, R~ the 
position vector of the ath nucleus, and Z~e the charge of the ath nucleus. 

The LEAF (or Wigner-Seitz-type potential) v(r) is defined as 

v(r) = v~(r) (when r ~ C~), (4) 

where C~ is a three-dimensional (3D) region, which could include most of the 
electron cloud of the imaginary free atom that has the same type nucleus at the same 
position as the ath nucleus and also has Z~ electrons, whose configuration is most 
stable; where v~(r) is the potential that reproduces the Hartree-Fock orbitals in the 
free atom. None of the 3D-region pairs (C~ and C~) overlaps, and the sum of the 3D 
regions is the region in which electron movement is contained (Fig. 1). Naturally, 
the one-electron Hamiltonian based on the LEAF potential is defined as 

2 2 2 2 h(#) =- ( -h212m)(e21~x~ + ~ I~Y~ + ~ laz.) + v(r.). (s) 

Fig. 1, Illustration of  'cells' in a system. The shaded region 
denotes the outside of  the molecule, into which no electron 
is assumed to enter. CI, C2, and (73 are the atomic cell 
labels in a triatomic molecule 
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According to this definition of the 3D region, C~ may be called an atomic 
region or atomic cell. The 3D regions are not completely defined here because 
only the number of electrons in each region is needed for the present derivation 
and for the actual calculations of the system's total energy. 

2.2. Rewriting o f  potential terms in the complete Hamiltonian 

Here, each atomic cell is divided into a core region and a valence region. The 
core region is defined as a 3D region that includes most of the core-electron 
cloud of the imaginary free atom, and the valence region is defined as the 
remaining region of the atomic cell (Fig. 2). For simplicity, electron movements 
will be discussed based on the classical picture; this is valid as long as the 
potential terms of the complete Hamiltonians are discussed because the potential 
terms are functions of electron positions only. 

First, all the core electrons are assumed to be frozen in each core region. 
Second, a new set of electron labels in the system is introduced. Classically, at a 
given time, the number of electrons in each 3D region can be counted: Z,c 
electrons in the core region of the atomic cell C, and (Z,v + K,) electrons in the 
valence region of C~, where Z,c and Z,v stand for the number of core and valence 
electrons in the ground-state neutral free atom, respectively, and K, is a variable 
integer which denotes the excess number of electrons in C,. We give the ith 
electron in the core region of C, the label 

(ai}  (i = 1, 2 . . . .  , Z~c), (6) 

and the ith electron in the valence region of C~ the label 

[~i1 (i = 1, 2 , . . . , Z , v  + K , ) .  (7) 

Utilizing labels (6) and (7), one can rewrite the potential terms of the complete 
Hamiltonian (Eq. (3)) as 

• =1  f l = l  I i = 1  i = 1  

Nn Nn ~ ~ c  Z~ c Z~c ZI~v + KB 
+(1/2)  Z E e2/lr<~i>--r<aJ>] + Y'. Y'. e2/lr<~,>-r~jlJ 

a¢=l ,3=1 ( i = l  j = l  i= l  j = l  

+ E e2/lrl~,l - r<aJ>l + e2/lr[~i] - r t m  
i = 1  j = l  i = 1  j = l  

N n ( Z~c Z~c Zc~ c get v + K~ 

+ E l(1/2) E E e21Jr<,,>-r<,>J + Y'. Y'. e=/lr<=o-rt.ll 
ce=l  i= l  j = l  i = 1  j = l  

(i ~j) 

+(1/2)  Z E e2/lrt~il-rl~jl + ( 1 / 2 ) E  E Z Zae:/IR -R,I • 
i = 1  j = l  c t = l  f f = l  

(~ ~'J) (~ ~, .) (8) 

::o 
Fig. 2. Illustration of a core region and a valence region. 18, 
Core region; g~ valence region 
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To simplify Eq. (8), we first take the following approximations for the 
distances between the particles located in different cells: 

Ir<ai> -- R~,[ ~ IRa - R:I (~ #/~), (9) 

[rLa, 1 -R~,I ,-~ IRa - R :  I (~ #~) ,  (10) 

Ir<:;>- r<aj> I ~ IR: - R . I  (~ ~]~), (11) 

I~<:,>--~+~l ~ IR: -Ral  (: +/~), (12) 

I't:,~-'+~l ~ IR=-Ral (: eft).  (13) 
When the distance between the nuclei in question is very short, the approxima- 
tions of (9)-(13) are poor; these approximations will be discussed and modified 
later. Second, we approximate the distances between the core electrons and the 
valence electrons in one cell by 

Irt~jl - r<=i> I ~ Irt~jl - R= [. (14) 

Third, we approximate the interaction between core electrons in one core region 
by 

e " / l r < = , >  - r<~j> I ~ V=c (15) 

and that between valence electrons in one valence region by 

e'/lrt=, 1 - rt=j~ I ~ w=,  (16) 

where ~=c and ~v are constant values. Introducing approximations (9)-(16) into 
the description of V in Eq. (8), one then obtains 

V ~  • ( - Z~e2) /Ir <~i> - R= l + 2 ( - Z~veZ) /lrt,q - R~ 
~ = 1  { i = l  i = l  

Nn Nn 
+ ( 1 / 2 )  y~ Y~ K ~ K a e 2 / l e = - e a l  

~ = 1  B = l  
(~##)  

Nn Nn 
+ y~ (1/2)(Z=o+K=)(Z=,+K=-I)~,=o+ Y~ (1/2)Z~(Z~c-1)r=c. (17) 

~ = 1  0~=1 

Here, we discuss the replacement of the intercellular interaction in Eq. (17), 
(K=K a e2/lR=- Ral ), with another appropriate form because the discrepancy 
between the position of a nucleus and the effective center of the cell (electrons 
and the nucleus) cannot be neglected when the distance between the nuclei in 
question is very short. To account for the above discrepancy, we introduce 
simple model for the intercellular interaction V~a: 

' V~,a = K=Ka e2/f=a(I g. - Ra I), (18) 

where the function f-a is defined by 

~R__=ac (X  <~ R:ac) (19) 
f :a(X)  

i x  

and R~a ~ denotes the minimum value of the ]R= - R a Is at which the approxima- 
tions of (9)-(13) are valid. 
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2.3. Introduction of potentials for atomic orbitals 

The one-electron potential of a neutral free atom can be written as 

v=(r) = ( -Z=eZ) /lr - R= I + G=(r), (20) 

where the local function G,(r) is the repulsive potential originating from other 
electrons in the atom. Here, one may introduce the following approximations: 

G~(r<,i>) ~ (Z,c - 1)~,c + Z,v~cv (21) 

and 

G,(rt,il ) ~ (Z,o - 1)~,= + Z,ceZ/Irt,,l -- R, l, (22) 

where the value of the repulsive potential between a core electron and a valence 
electron is replaced with a constant value (~,=) in Eq. (21). 

Replacing the intercellular terms in Eq. (17) with the new one of Eq. (18), 
rewriting the electron-nucleus terms in Eq. (17) by using Eq. (20) with approxi- 
mations of (21) and (22), and changing the electron labels by using the definition 
of LEAF potential (Eq. (4)), one derives the following approximate relation 
between v and V. 

Ne N, 
V~ E v(ru) + ~ (1/2)K~(K, + 1)~,~ 

/ t = l  ~ = I  

u . u .  (23) 
+(1/2) Z E K, Kae2/f,a(I R,-Ral) +const, 

~ = 1  f l = l  

where 'const' is invariant, and is specified by 
Nn Nn Nn 

c o n s t -  -- ~ (1/2)Z~(Z~v- 1 ) ~ -  ~ (1/2)Z=~(Z~- l )T~-  ~ Z~vZ~T~o~. 
~ = 1  ~ = 1  ~ = 1  

(24) 

From the definition of H and/~ (Eqs. (1) and (5)), one obtains an approximate 
relation between the complete Hamiltonian and LEAF one-electron Hamiltoni- 
ans for a system as 

1:I ~ h(u) + E (1/2)K~(K~ + 1)~= 
p = l  ~ = 1  

N~ N, (25) 
+(1/2) ~ y~ g=g~e~ /La( lR=-R~l )+cons t .  

~ = l f l = l  
( ~ # # )  

3. Physical meaning of the relation between / t  and 

The eigenvalue of the H, i.e., the total energy of a system, can be calculated 
approximately by utilizing Eq. (25). First, the right-hand side of Eq. (25) is 
divided into the sum of an uperturbed term, 

Ne 
H(0) = E /~(/~) + const, (26) 

# = 1  
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and a perturbation term, 

.Am Nn Nn 
H' - ~ (1/2)K~(K~ + 1)7~v + (1/2) ~ 

o t= l  ~ = 1  ,8=1 
(~ # #) 

K=Ka eZ/f~a(lR~ - Ra I)- (27) 

Let the eigenfunctions of/~ be {~b,.} and let the eigenvalues of/~ be {ei}. The 
eigenvalues of H(o) are various sums of e,.s represented as 

Es(o) = ~ vie~ +const, (28) 
i = l  

where d denotes the dimension of {~b;}, vi the number of the electrons which 
occupy the orbital of ~b,. (v; = 0, 1, or 2), and the letter J the electronic configura- 
tion (~J(O)) characterized by {Vl, v2 . . . . .  va}. According to first-order many-body 
perturbation theory, one obtains the total energy of the system from Eqs. 
(25)-(28) as 

Ej "Es(o) +Ejo)aa +Ejo)an, 

where Ej(I)AA and EJ(1)AB a r e  defined by 

and 

(29) 

N~ 

EjO)AA -- ~ (1/2)Qs,(Qj, - 1)y,v (30) 

N~ N~ 

EjO)AB -- (1/2) ~ Y' Qj~Qj, e2/f~p(lR~ -RAIL (31) 
~ = 1  p = l  

respectively, where Qj~ denotes the expectation value of -K~ for the electronic 
configuration ~s(o), i.e. (¢~s(o) I - K~ I~J(o) ), and the statistical variances of K~ s 
and the covariances of (K~, Kp)s are neglected. 

According to the definition of K~ in Sect. 2.2, the physical meaning of Qj~ e 
is the charge of C~ for ~J(0), or the zeroth-order atomic charge. Thus in the case 
where the system has neither charge nor polarity, i.e. Qj~ = 0 for every 0~, 

Ej ~ Ej(o), (32) 

as can be determined from Eqs. (29)-(31). Therefore, generally speaking, the 
Ej(o) term of Es may be related to the covalent or metallic bonds in the system. 
Equation (32) may also justify the procedure for evaluating cohesive energies of 
alkali metals in the Wigner-Seitz method [3] and the foundation of the H/ickel 
theory [5]. Equation (30) shows that the Ejo)a A term can describe the increase of 
electron-electron repulsion originating in the negative charges of cells. 1 Finally, 
Eq. (31) directly shows that Eso)a n is strongly related to the ionic bond 
character. 

Ejo)a A consists of the quadratic functions of atomic charges, which have been used to correct the 
valence orbital ionization potentials (VOIP), i.e. atomic orbital energies in iterative EH theories. In 
the present formulation, the functions work as one of the first-order many-body corrections for total 
energy, using the zeroth-order atomic charges 
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4. Applications 

4.1. Procedure 

The details o f  the calculations o f  molecular  orbitals and cellular charges are 
described in Appendix  A1. The a tomic parameters,  e~n t and V~, were evaluated 
f rom atomic spectra [6] (see Appendix  A2), and the Slater exponents o f  atomic 
orbitals (AOs)  were taken f rom H a r t r e e - F o c k  calculations o f  a toms [7]. The 
a tomic parameters  are shown in Table 1, while the V~ s for  N and O are not  
necessary in the present applications. The R~ac s (Eq. (19)) used here are 0.92/k 
for the H - F  pair, 1.66 ]~ for the H - G a  pair, and 1.50 ,~ for  the H - A s  pair. 

4.2. Equilibrium internuclear distances of  homonuclear diatomic molecules 

In the case o f  homonuclear  diatomic molecules in the ground state, the total 
energy is simply equal to Ej~o~ (Eq. (28)) because the a tomic charges (Qj~) are all 
zeros. Such a formula  for the total energy has been employed in the E H  
molecular  orbital (MO)  calculations [1]. Thus we can compare  the M O  calcula- 
tions based on L E A F  with those based on the matrix element o f  a conventional  
E H  Hamil tonian  (Wol f sbe rg -He lmho l t z  formula  [8], see Appendix  A3). 

Table 2 lists the equilibrium internuclear distances (re) o f  some homonuclear  
diatomic molecules in their g round  state (H2, N2, 02,  and As2), calculated by 
minimizing the total energies o f  Eq. (29). This table also includes the experimen- 
tal res and the results o f  the conventional  E H  calculation. All res calculated by 
the present method  ( L E A F )  compare  well with experimental data. 2 This result 
proves the soundness o f  the derivation o f  the L E A F  total-energy formula.  

Table 1. Atomic parameters 

Element ?~/eV Valence AO (~t a e=l/eV 

H 17.00 b ls 1.0000 - 13.60 
N 2s 1.9237 - 25.57 

2p 1.9170 - 13.19 
O 2s 2.2459 - 32.37 

2p 2.2266 - 15.84 
F 19.12 2s 2.5639 -37.86 

2p 2.5500 - 18.65 
Ga 8.31 4s 1.7670 - 12.20 

4p 1.5549 - 5.93 
As 10.52 4s 2.2307 - 18.20 

4p 1.8932 -9.19 

a (,o,t denotes the exponent of a Slater-type atomic orbital 
b Y~v for H is the one-center electronic repulsion integral (Isis[Isis) 

2 The reason why the nuclei of H 2 do not unite in the calculation with the LEAF method, in contrast 
with the EH method, is that the LEAF method incorporates the 'quantum size effect', i.e. the effect 
that the kinetic energy of electrons increases as the length of the la orbital decreases (see Appendices 
A1 and A3) 
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Table 2. Calculated and experimental internuclear distances a of  
homonuclear  diatomic molecules in the ground state 

Molecule Present work EH b Experimental ¢ 
(LEAF) 

H 2 0.83 0.00 0.74 
N 2 1.13 0.87 1.10 
O 2 1.16 1.52 1.21 
As 2 1.92 1.69 2.10 

a Units: A 
b Based on the Wolfsberg-Helmhol tz  formula (K = 1.75) 
c Huber  KP, Herzberg G (1979) Constants  of  diatomic molecules. Van 
Nostrand Reinhold 

4.3. Importance of the first-order correction for determining 
the equilibrium internuclear distance of a Gall molecule 

Figure 3 shows the variations of the total energy (EG =EG<o) + 
EGO)AA + E~<I)AB), of the zeroth-order term (EG(0)), and of the first-order term 
(EG<l) = EG(1)AA + EG<I)AB) of the Gall  molecule in the ground state, all as 
functions of the internuclear distance. The minimum of the first-order-corrected 
total energy (E~ = EG<o) + EG<I)) approximately corresponds to the experimental 
re of Gall (1.66/~). However the internuclear distance for the minimum EG<o) is 
far longer than that for the minimum E~ (,-,0.4 ~). Thus the first-order 
correction is very important in determining the re of Gall  in the ground state. 

> 
o 

e" 
tiJ 

6 . 0  

4 . 0  

2 . 0  

0 . 0  

i I 

v,/ y 

/ 

~ _ \  i / 

\ .-'" EG (i) 

\ 

x min 

Ea<o)'-.._ ~ _ 

i i 1 i 

1 . 4  1 . 8  2 . 2  

I n t e r n u c l e a r  D i s t a n c e  / A 

Fig. 3. Importance o f  the first-order 
correction in determining the equi- 
librium internuclear distance of  G a l l  in 
its ground state. E G -= EG(o) + EG(L). 
EG(1) --= EG(1)aa + E~(1)AB 
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E60 ) - Ec0)a a + Eo0)aB 

I n t e r n u c l e a r  D i s t a n c e  / A 

In Fig. 4, E~o ) is divided into E6(1)AA and EG(1)AB , and the variation of cellular 
charge (Qca -- - Q H )  is shown. First, Fig. 4 shows that the increasing character 
of  the E ~ )  comes from that of  the E~(I)AA. Second, analyzing the formula for 
E~o)a A (Eq. (30)) and the Q curve, it is found that the electronic repulsion 
orginating from the negative charge of the H cell causes the attractive characters 
of  E~O)A A and E~(1). 

4.4. Importance of the first-order correction to potential energy curves 
for various configurations of AsH and F H  molecules 

Figures 5 and 6 show the potential energy curves for the various electronic 
configurations of  AsH and FH molecules, respectively. The minima of  both the 
zeroth-order and the first-order-corrected total energies of  configuration I (repre- 
senting the ground state) of  AsH and FH correspond to the experimental r~s, 
1.53/~ and 0.92 A, respectively. Also, the energy levels of  configuration I I  of  FH,  
measured from configuration I at r e, (11.68 eV in the zeroth order and 10.24 eV 
in the first order) are consistent with the (lzr ~ 4 a )  excitation energy calculated 
by reliable CI methods ( ~  10.2 eV) [9]. 3 

3 This excellent result for the excitation energy is attributed to the character of the approximate 
LEAF one-electron Hamiltonians (A3), the eigenvalue problem of which can be solved exactly, and 
all the eigenvalues (i.e. the orbital energies) of which are negative (see Appendix A1 and [4]) 
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Fig. 5. Calculated potential energy curves for various configurations of  AsH. Broken line: Ej(0); 
solid line: Ej(o)+Ej(I)A,~+Ej(1)AB. I: [core] (7<r)2(8a)2(4n)2; II: [core] (7a)2(8a)1(4n)3; III: 
[core] (7a)2(8a) l(4n)2(9a) 1 
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Fig. 6. Calculated potential energy curves for various configurations of FH. Broken line: g j ( 0 )  ; solid 
line: Ej(o)+ Ej(I)AA + Ej(l)aS. I: [core] (2a)2(3a)2(ln)4; II: [core] (2a)2(3a)2(ln)3(4a)l; Ill:  [core] 
(2~r)2(3a) ](ln)4(4a)] 
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As seen from Figs. 5 and 6, the differences between the zeroth-order energy 
curves and the first-order-corrected curves are not so large around the re. 
However, as internuclear distance increases, the first-order-corrected curves of 
configuration I become much higher than the zeroth-order curves, cross configu- 
rations II and III, and reach the final states of heterolytic dissociation 
(As + + H -  and F -  + H+). This is mainly due to the increase of the intracellular 
electronic repulsion (E(1)AA) originating from the negatively charged atom (H in 
AsH and F in FH). On the other hand, both the zeroth-order and the first-order- 
corrected curves of configurations II and III reach the same energy level for the 
final states of homolytic dissociations (As + H and F + H). The energy levels for 
the final states of heterolytic dissociation calculated by the first-order approxima- 
tion are roughly in agreement with the experimental data (9.06 eV for As + + H -  
and 16.67 eV for F -  + H +) [6, 10], while the zeroth-order approximation fails to 
estimate even the sign of of the energy levels. 

Finally, it should be noted that the potential energy curves, calculated by the 
first-order LEAF method, for the ground state and valence-shell-excited states of 
FH (Fig. 6) are semi-quantitatively consistent with those calculated by reliable 
CI methods, except for the singlet-triplet splitting and the configuration mixing 
between configurations I and III having the same spin and angular momentum 
[9]. This means that while the exact potential energy surfaces may need to be 
obtained by laborious calculations, the qualitative potential energy surfaces of 
the ground state and valence-shell-excited states of molecules can be predicted by 
the first-order LEAF method, which saves as much computer time and memory 
as EH methods. 

5. Conclusions 

The formula which describes an approximate relation between LEAF (or 
Wigner-Seitz-type) one-electron Hamiltonians and the complete Hamiltonian 
for a system (any molecule or solid) was derived (Eq. (25)). According to this 
formula, the complete Hamiltonian for a system is divided into four terms: the 
sum of LEAF one-electron Hamiltonians of all electrons in the system, the 
electronic repulsion originating from the charges of atomic cells, the Coulomb 
potential between charged cells, and a constant term. 

It was shown that the approximate total energy for a system can be obtained 
from a first-order many-body perturbation theory in which the uperturbed term 
is the sum of LEAF one-electron Hamiltonians plus the constant term, and the 
perturbation is the remaining terms. The resultant total energy is approximately 
formulated as a quadratic function of the zeroth-order atomic charges added to 
the sum of the energies of occupied LEAF orbitals. For a molecule and a solid 
which have neither polarity nor charge, the total energy is approximately equal 
to the sum of occupied LEAF orbital energies plus the constant value. This 
approximate formula for total energy was found to justify the procedure for 
calculating the cohesive energies in the Wigner-Seitz method and the formula 
for total energy in the Hfickel methods. 

The res and the valence-shell excitation energies of diatomic molecules were 
calculated by the first-order formulation based on LEAF. These results show the 
soundness of the approximate relation between the LEAF one-electron Hamilto- 
nians and the complete Hamiltonian for any system. The first-order correction, 
especially the electronic repulsion originating in the charge of each atomic cell, 
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was shown to be important in calculations of re for Ga l l  and of the potential 
energy curves of AsH and FH. An example of the intelligible analysis of the 
E~o ) curve in terms of cellular charges was shown for Gall .  Finally, it was 
suggested that the first-order LEAF method could give at least qualitative 
potential energy surfaces for various electronic states of molecules without 
laborious calculations. 
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Appendices 

A 1. Calculation of  molecular orbitals and atomic cellular charges 

When solving the eigenvalue problem as 

g(,)¢ = (A1) 
the following approximate LEAF Hamiltonian (/~) is adopted, assuming that 
each core atomic orbital (AO) does not overlap with either valence orbitals or 
other core AOs [4]. For the core orbitals in the ath cell (C~) in a molecule or a 
solid, 

/~~ E e~., E Izk)(Zkl, (A2) 
{~n/} c V~ k • {~n/} 

and for the valence orbitals in the system, 
N, 

"~ E E W~,,,e~,,t E [Zk)(Zk I' (A3) 

where U~ and V~ denote the set of core AOs and that of valence AOs of the 
ath imaginary atom, respectively, {a, n, l} the set of AOs that belong to U~ or 
V~ and have both a principal number n and an azimuthal number l, e~.t the 
orbital energy of the AOs that belong to {~, n, l}, Zk the kth AO in the system, 
and W~.l (the integral of X~ in C~, where Xk e {a, n, l}) is a function of overlap 
integrals as 

W~,u - E E I[Sl/2]ijt2/( 2l + 1). (A4) 
i e  {~ /}  j ~  V= 

In Eq. (A4) [M]~j denotes the (i,j) element of the matrix M, and S the matrix 
of overlap integrals between AOs in the system. Here, it should be noted that 
the W~ls decrease as the size of the system (the sum of cellular sizes) decreases. 
This represents the 'quantum size effect', i.e. the effect that the kinetic energy 
of an electron should increase as the wavelength of the orbital function de- 
creases. 

From approximation (A2), the eigenfunctions for core electrons in the 
system remain the core AOs in the isolated state. From approximation (A3), 
the eigenfunctions for valence electrons are the linear combination of valence 
AOs. Therefore, the ith eigenfunctions of Eq. (A1) can be represented as 

¢i ~ E C.Zr, (AS) 
r E ~  



Relation between Wigner-Seitz-type Hamiltonians and complete Hamiltonians 23 

where f2 denotes all AOs in the system, and Cri is the coefficient for the rth AO 
in ~b~, Thus, the matrix representation for Eq. (A1) is 

(SWeS)C = SC~,, (A6) 

where W denotes the diagonal matrix (elements of  which are unities for core 
AOs and W~,t s for valence AOs), e the diagonal matrix of  {e~nt }, C the matrix 
of {Cre }, and e the diagonal matrix of  the molecular orbital energies {ei}. 

In actual calculations, we estimated the charges of the cells 
(QJ~ -= (~J(o) l -K~ ]~s(0))) by Mulliken's atomic population as 

d 

Qs, = z ~ -  ~ ~ ~ ViCriCsiSrs. (A7) 
i =  l r e  U c t u V ~ s E f 2  

A2. Evaluation of  atomic parameters 

From Eqs. (28)-(31),  the total energy of  a free atom can be represented as 

Es = ~ n~,te,,l + (1/2)Qs,(Qs~ - 1)7,v + const, (A8) 

where n=,l is the number of the electrons that occupy the AOs that belong to 
{a, n, l} (where n~t = 0, 1 , . . . ,  41 + 2). Let the first ionization potential that 
removes an electron from an AO that belongs to {a, n, l} be /1  (a, n, l), and let 
the second ionization potential that removes an electron from an AO that 
belongs to {a, n, l} be I2(a, n, l). From Eq. (A8), one obtains 

e,,t = - I i ( a ,  n, l) (A9) 

and 

7,v = I2(a, n, l) -- Ii(a, n, l). (AIO) 

Thus the atomic parameters (e,,t and ?,v) can be evaluated from the experimental 
ionization potentials of  free atoms. When evaluating the ionization potentials, we 
usually use the experimental energy levels of  the most stable configurations for a 
given AO and given valency of the atom. 

A3. Derivation of  Wolfsberg-Helmholtz formula 

From Eq. (A3), the matrix element between valence AOs is written as 

(•r I lzs > = Srk WkekSks, (A11) 
k 

where Srk is the overlap integral between ~r and Z~, and Wk is W~,t for Xk. 
Replacing the W~ s with unities as well as neglecting the terms in which ISrk I < 1 
and < 1, one obtains a similar matrix element as a conventional EH 
(Wolfsberg-Helmholtz [8]) formula, i.e. 

e r (r = s) (A12) 
(Zr fwH IZs ) = ( 1/2)KSrs(e r + es) (r ~ s), 

where K denotes the constant parameter. However, the lack of  the variable Wk 
which could represent the 'quantum size effect' is fatal for bond-length calcula- 
tions. 
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